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Using a combination of critical point theory of ordinary differential equations and
numerical simulation for the three-dimensional unsteady Navier–Stokes equations,
we study possible flow structures of the vortical flow, especially the unsteady vortex
breakdown in the interaction between a normal shock wave and a longitudinal
vortex. The topological structure contains two parts. One is the sectional streamline
pattern in the cross-section perpendicular to the vortex axis. The other is the sectional
streamline pattern in the symmetrical plane. In the cross-section perpendicular to the
vortex axis, the sectional streamlines have spiral or centre patterns depending on a
function λ(x, t) = 1/ρ(∂ρ/∂t +∂ρu/∂x), where x is the coordinate corresponding to the
vortex axis. If λ> 0, the sectional streamlines spiral inwards in the near region of the
centre. If λ< 0, the sectional streamlines spiral outwards in the same region. If λ=0,
the sectional streamlines form a nonlinear centre. If λ changes its sign along the vortex
axis, one or more limit cycles appear in the sectional streamlines in the cross-section
perpendicular to the vortex axis. Numerical simulation for two typical cases of shock
induced vortex breakdown (Erlebacher, Hussaini & Shu, J. Fluid Mech., vol. 337,
1997, p. 129) is performed. The onset and time evolution of the vortex breakdown
are studied. It is found that there are more limit cycles for the sectional streamlines
in the cross-section perpendicular to the vortex axis. In addition, we find that there
are quadru-helix structures in the tail of the vortex breakdown.

1. Introduction
Vortex breakdown characterizes an abrupt change of the vortex structure, which

is a crucial element in many applications. Even though the occurrence of vortex
breakdown on the lee side of a delta wing may disturb the lift and drag characteristics
leading to poor controllability, it may also be useful in many other applications. For
instance, vortex breakdown has often been proposed as a mechanism for rapid
dissipation of the tip vortex shed from a large aircraft which may limit the frequency
of take-off and landing at major airports. In the area of combustion, the swirling flow
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is frequently employed to enhance mixing and the breakdown region may be used to
stabilize the combustion flame.

The phenomenon of vortex breakdown was first observed by Werle (Werle 1954)
in 1954 in a water tunnel. Since then, vortex breakdown has been extensively studied
including experiments (Sarpkaya 1971; Faler & Leibovich 1977; Escudier 1984;
Brücker & Althaus 1995; Klass, Schröder & Thomer 2005), numerical simulations
(Kandil, Kandil & Liu 1992; Spall 1996; Zhang, Zhang & Zhu 1996, 1997; Krause,
Thomer & Schröder 2003; Klass et al. 2005) and theoretical analysis (Hall 1961,
1967; Benjamin 1962; Howard & Gupta 1962; Bossel 1969; Lessen, Singh & Paillet
1974; Blackmore 1994; Brøns et al. 2007; Blackmore, Brøns & Goullet 2008).
Based on experimental observation, Sarpkaya classified vortex breakdown into
three types: bubble, spiral and double helix (Sarpkaya 1971). Faler and Leibovich
(Faler & Leibovich 1977) found that there are six distinct types of vortex breakdown
which contain the three modes described by Sapakaya and three more modes. The
most common modes might be the bubble type and the spiral type, which can
be found in almost all problems of vortex breakdown ranging from low Reynolds
number flow in a swirl tube (Sarpkaya 1971; Faler & Leibovich 1977) or container
(Escudier 1984) to the high Reynolds number vortical flow over delta-wings (Zhang,
Zhang & Zhu 1996, 1997). Numerical simulation (Spall 1996) and experimental
study (Brücker & Althaus 1995) found that the vortex breakdown can change from
one mode to another under certain conditions. To study the flow structure in the
breakdown region of bubble type breakdown, a dynamical model was derived by
Blackmore (Blackmore 1994). Blackmore et al. also proposed a coaxial vortex ring
model (Blackmore et al. 2008). To reveal the mechanism of the vortex breakdown,
three different theories have been developed. They are the concept of a critical state
(Benjamin 1962; Bossel 1969), analogy to boundary layer separation (Hall 1961,
1967) and hydrodynamic instability (Howard & Gupta 1962; Lessen et al. 1974).
However, there still is not a universally accepted theory that can explain all the
phenomena of vortex breakdown. More details can be found in the review papers
(Leibovich 1978; Delery 1994; Kalkhoran & Smart 2000).

Enhancing mixing is an important application of vortex breakdown. In this area,
the topological structure may play a very important role for the mixing efficiency.
There have been many studies on the topological structure of the swirling flow and
vortex breakdown. In 1995, Zhang (Zhang 1995) studied the topological structure
of a steady vortex using the critical point theory of ordinary differential equations.
He concluded that the sectional streamline pattern in the cross-section perpendicular
to the vortex axis can be characterized by the function λ(x) = 1/ρ(∂ρu/∂x). Here, x

represents the position along the vortex axis. If λ> 0, the sectional streamlines in the
near region of the vortex core spiral inwards. If λ< 0, the sectional streamlines in
this region spiral outwards. If λ changes its sign along the vortex axis x, one or more
limit cycles appear in the sectional streamlines in the cross-section perpendicular
to the vortex axis. In the case of isentropic flow, the function λ(x) can be written
as λ(x) = (M2

x − 1)(1/ρu)(∂p/∂x) where Mx is the Mach number along the vortex
axis. Hence, it is found that there is an essential difference between supersonic and
subsonic vortex flows. In the adverse pressure region, the supersonic vortex spirals
inwards while the subsonic vortex spirals outwards. In the favourable pressure region,
the supersonic vortex spirals outwards while the subsonic vortex spirals inwards.
Therefore, vortex breakdown takes place in the adverse pressure region for a subsonic
vortex. However, a supersonic vortex cannot break down unless there is a shock.
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Numerical simulation for the vortical transonic and supersonic flows demonstrates
the validity of the above results (Zhang et al. 1996, 1997). In the simulation, one
or two limit cycles were found in the sectional streamlines in the cross-section
perpendicular to the vortex axis and there are similar experimental results (Delery
1994, figure 28 on page 29). Using a bifurcation theory of two-dimensional dynamical
systems, Brøns, Voigt & Sørensen (1999) studied the streamline topology of steady
axisymmetric vortex breakdown in a cylinder with co- and counter-rotating end-
covers. The study showed that all observed bifurcations can be completely described
by normal forms. A classification of the steady pattern of the flow is obtained.
Based on the notion of structural instability of dynamical system and fully three-
dimensional simulations, Brøns et al. (2007) concluded that the structural instability of
the axisymmetric bubble results in the complicated open bubble structure incompatible
with axisymmetry.

However, both numerical simulation and experiment results reveal that the flow
in the breakdown region is unsteady. A typical example is the vortex breakdown in
the interaction of a shock wave and a longitudinal vortex which was systemically
studied by Erlebacher, Hussaini & Shu (1997) through solving the axisymmetric
Euler equations with a third order accurate essentially non-oscillatory (ENO)
scheme. Numerical simulation shows that an oblique shock wave generated by the
interaction continuously moves upwards. A breakdown point, which just follows
the intersection of the oblique shock wave and vortex axis, continuously moves
upwards. Therefore, the flow field in the breakdown region is unsteady, hence the
topological structure may be different from that in the steady case. The purpose
of this paper is to study the topological structure of unsteady vortical flow.
Critical point theory is utilized, and direct numerical simulation for the full three-
dimensional unsteady Navier–Stokes equations by a fifth order weighted essentially
non-oscillatory (WENO) scheme is performed to study the onset and time evolution
of the topological structure of the vortex breakdown in the shock longitudinal vortex
interaction.

This paper is organized as follows. Section 2 contains an analysis of the topological
structure of the vortex flow. The sectional streamline patterns in the cross-section
perpendicular to the vortex axis and in the symmetrical plane are analysed. Section 3
contains numerical simulation results of vortex breakdown for the interaction of
a shock wave and a longitudinal vortex. Two typical cases are simulated. One is
out of the breakdown region and the other is a typical case inside the breakdown
region in Erlebacher et al. (1997). Comparison between the numerical results and the
topological analysis is performed. Section 4 contains our concluding remarks.

2. Topological analysis of the vortical flow
The basic idea of a topological approach to fluid mechanics is to analyse the

trajectories of the ordinary differential equations Ẋ =U , where U is the velocity field.
We choose an orthogonal coordinate system (x, y, z), where the axis x is the same

as the vortex axis. The axes y and z are in the cross-section perpendicular to the
vortex axis. u, v and w are the velocity components corresponding to the directions
of x, y and z respectively. The flow satisfies the continuity equation

∂ρ

∂t
+

∂ρu

∂x
+

∂ρv

∂y
+

∂ρw

∂z
= 0, (2.1)
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and the Euler equations for the velocity

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= − 1

ρ

∂p

∂x
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= − 1

ρ

∂p

∂y
,

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= − 1

ρ

∂p

∂z
.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.2)

Here, we neglect the viscous terms due to the high Reynolds number of supersonic
flow and since we are only looking for qualitative characters of a topological analysis.
We also neglect the energy equation since it is not used in the analysis.

Because the vortex axis is a streamline, and assuming the flow is axisymmetric, we
have the boundary conditions on the vortex axis

v(x, 0, 0) = w(x, 0, 0) = 0. (2.3)

The velocity in the near region of the vortex axis can be expressed by a Taylor
expansion

u(x, y, z) = u0 +
∂u

∂x
x +

∂u

∂y
y +

∂u

∂z
z + O(x2, y2, z2),

v(y, z) =
∂v

∂y
y +

∂v

∂z
z + O(y2, z2),

w(y, z) =
∂w

∂y
y +

∂w

∂z
z + O(y2, z2).

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.4)

Here and below, all the spatial derivatives ∂u/∂x, ∂u/∂y, ∂u/∂z, ∂v/∂y, ∂v/∂z, ∂w/∂y

and ∂w/∂z are evaluated on the vortex axis.
The streamlines can be represented by the ordinary differential equation (Brøns

et al. 2007)

dx

dt
= u,

dy

dt
= v,

dz

dt
= w.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(2.5)

Equation (2.5) is a dynamical system which can describe the flow patterns near
a critical point in the flow field. There has been a long history in the literature of
using a dynamic system approach to study the streamline pattern. Most studies are
on streamline patterns in the vicinity of steady and unsteady separation (Hunt et al.
1978; Tobak & Peake 1982; Perry & Chong 1986; Haller 2004; Surana, Grunberg
& Haller 2006). Brøns et al. studied the streamline topology of steady axisymmetric
vortex breakdown in a cylinder with co- and counter-rotating end-covers (Brøns et al.
1999). The study showed that all observed bifurcations can be completely described
by normal forms. A classification of the steady pattern of the flow is obtained by a
combination of bifurcation theory and numerical simulation.

Here, we use (2.5) to study the streamline pattern of a swirling flow, especially in
the cross-section perpendicular to the vortex axis as well as in the symmetric plane.
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Figure 1. The pattern of a critical point.

2.1. Sectional streamline patterns in the cross-section perpendicular to the vortex axis

In the cross-section perpendicular to the vortex axis, the sectional streamline can be
described by

dz

dy
=

w

v
=

∂w

∂y
y +

∂w

∂z
z + O(y2, z2)

∂v

∂y
y +

∂v

∂z
z + O(y2, z2)

. (2.6)

If we neglect the higher order terms, it can be rewritten as

dz

dy
=

w

v
=

∂w

∂y
y +

∂w

∂z
z

∂v

∂y
y +

∂v

∂z
z

. (2.7)

According to the critical point theory of ordinary differential equation (Crank,
Martin & Melluish 1977), the sectional streamline pattern in the vicinity of
the vortex axis depends mainly on two parameters: p = −(∂v/∂y + ∂w/∂z) and
q = ∂v/∂y × ∂w/∂z − ∂v/∂z × ∂w/∂y. There are three kinds of critical points: saddle,
node and focus. The classification of the critical point in the parameter plane is
plotted in figure 1.

For a swirling flow, the sectional streamline pattern should be a focus in the near
region of the vortex axis (Chong, Perry & Cantwell 1990). The spiral direction is
determined by the function λ(x, t) defined as

λ(x, t) = p = −
(

∂v

∂y
+

∂w

∂z

)
o

=
1

ρ

(
∂ρ

∂t
+

∂ρu

∂x

)
o

. (2.8)

Here, we have used the continuity equation (2.1) and the boundary condition (2.3)
on the vortex axis (the subscript ‘o’). If λ(x, t) > 0, the sectional streamlines in the
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(a) (b) (c)

Figure 2. Schematic diagram of the sectional streamline topology in the cross-section
perpendicular to the vortex axis. (a) λ(x, t) < 0; (b) λ(x, t) = 0; (c) λ(x, t) > 0.

X

LC

Figure 3. Schematic diagram of the sectional streamline topology in the cross-section and
its relation with λ along the vortex axis. ‘LC’ refers to a limit cycle.

cross-section perpendicular to the vortex axis spiral inwards. If λ(x, t) = 0, the sectional
streamlines in this cross-section form a nonlinear centre. If λ(x, t) < 0, the sectional
streamlines in this cross-section spiral outwards. The sectional streamlines in the
vicinity of the critical point are schematically shown in figure 2.

If the sectional streamlines far away from the vortex axis spiral inwards, which is
the case for vortices generated by the separation such as those over a delta wing, one
or more limit cycles appear in the cross-section perpendicular to the vortex axis as λ
changes its sign (Crank et al. 1977). This is schematically shown in figure 3.

A limit cycle separates the swirling flow into two different regions. Hence, the
appearance of limit cycles is not beneficial to the enhancement of mixing. Suppose
the fuel is in the inner region of a vortex and the air is in the outer region, a limit
cycle might separate the two kinds of fluids and prevent their mixing.



Topological structure of shock induced vortex breakdown 349

If the flow is steady, the first term on the right side of (2.8) vanishes, and the
function λ can be rewritten as

λ(x) =

(
∂u

∂x
+

u

ρ

∂ρ

∂x

)
o

. (2.9)

If the flow is isentropic, (∂p/∂ρ)s = a2 where a is the sound speed of the fluid. Then
we have

λ(x) =

(
∂u

∂x
+

u

ρa2

∂p

∂x

)
o

. (2.10)

The Euler equation on the vortex axis can be written as

u
∂u

∂x
= − 1

ρ

∂p

∂x
. (2.11)

At the points of uo �= 0, the function λ can be rewritten as

λ(x) =
1

(ρu)o

(
M2

x − 1
) (

∂p

∂x

)
o

. (2.12)

This equation is also obtained by Zhang in Zhang (1995).
From (2.12), we know that there is an essential difference between a supersonic

vortex and a subsonic vortex. For a subsonic swirling flow, the sectional streamlines
in the vicinity of the vortex axis spiral inwards in the locally favourable pressure
region and they spiral outwards in the locally adverse pressure region. However, for
a supersonic swirling flow, the sectional streamlines in the vicinity of the vortex axis
spiral outwards in the locally favourable pressure region and they spiral inwards in
the locally adverse pressure region.

2.2. Sectional streamline pattern in the meridional plane

In the meridional plane (the x–z plane), the sectional streamline can be described by

dx

dt
= u0 +

∂u

∂x
x +

∂u

∂z
z + O(x2, z2),

dz

dt
=

∂w

∂z
z + O(z2).

⎫⎪⎪⎬
⎪⎪⎭

(2.13)

If u0 = 0, the origin is a critical point. Keeping the linear term, the sectional
streamline in the vicinity of the critical point can be represented by

dz

dx
=

w

u
=

∂w

∂z
z

∂u

∂x
+

∂u

∂z
z

. (2.14)

The two parameters to determine the character of the sectional streamline pattern
in the vicinity of the critical point are p = −(∂u/∂x + ∂w/∂z) and q = ∂u/∂x × ∂w/∂z.
Because p2 −4q = (∂u/∂x −∂w/∂z)2 � 0, the only possible critical point on the vortex
axis in the meridional plane is a saddle or a node as shown in figure 4.

The pattern of critical points on the vortex axis in the meridional plane for an
unsteady flow is different from that of a steady flow, which is a saddle (Brøns et al.
1999). In fact, if the flow is steady, ∂ρ/∂t =0. The continuity equation (2.1) can be
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Figure 4. Schematic diagram of the sectional streamline topology in the meridional plane.

written as
∂(ρu)

∂x
+

∂(ρv)

∂y
+

∂(ρw)

∂z
= 0. (2.15)

At a critical point, this becomes

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0. (2.16)

The flow is incompressible in the near region of the critical point (Haller 2004).
At a non-degenerate critical point in the vortex axis of the meridional plane,

∂w/∂z = −∂u/∂x and q = ∂u/∂x × ∂w/∂z = −(∂u/∂z)2 < 0, hence the critical point is
a saddle.

If ∂w/∂z = 0, the origin is a degenerate critical point. Brøns et al. (1999) studied
the streamline pattern near a degenerate critical point for the incompressible flow
using the normal form theory and found there are six types of streamline patterns.
Here, we replot these patterns in figure 5. Even though these patterns are obtained
for the incompressible flow, they seem to be applicable also to the compressible flow,
probably because the flow becomes approximately incompressible in the near region
of a critical point, as in the steady case (Haller 2004).

3. Numerical simulation of shock-longitudinal vortex interaction
The fifth order finite difference WENO scheme (Jiang & Shu 1996; Zhang, Zhang

& Shu 2005, 2006) is used to simulate the following three-dimensional unsteady
Navier–Stokes equations for the conservative variables:

Ut + F (U )x + G(U )y + H (U )z =
1

Re
(Fv(U )x + Gv(U )y + Hv(U )z), (3.1)
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Figure 5. Streamline patterns near a degenerate critical point from figure 3 in Brøns M.,
Voigt & Sørensen (1999).

where

U = (ρ, ρu, ρv, ρw, e)T , F (U ) = [ρu, ρu2 + p, ρuv, ρuw, u(e + p)]T ,

G(U ) = [ρv, ρuv, ρv2 + p, ρvw, v(e + p)]T ,

H (U ) = [ρw, ρuw, ρvw, ρw2 + p, w(e + p)]T ,

Fv(U ) = [0, τxx, τxy, τxz, uτxx + vτxy + wτxz + qx]
T ,

Gv(U ) = [0, τxy, τyy, τyz, uτxy + vτyy + wτyz + qy]
T ,

Hv(U ) = [0, τxz, τyz, τzz, uτxz + vτyz + wτzz + qz]
T .

Here ρ is the density, (u, v, w) is the velocity, e is the total energy, p is the pressure,
which is related to the total energy by e =p/(γ − 1)+1/2ρ(u2 + v2 +w2), the ratio of
specific heats γ = 1.4. Re is the Reynolds number defined by Re = ρ∞u∞r0/μ∞, where
ρ∞, u∞ and μ∞ are the density, speed and viscosity for the mean flow upstream of
the shock wave, r0 is the reference length scale which is chosen as the vortex core. τij

and qi (where i, j = 1 for x, i, j =2 for y and i, j = 3 for z) are the stress tensor and
the heat flux, respectively, and are given by

τij = μ

(
∂ui

∂xj

+
∂uj

∂xi

− 2

3
δij

∂uk

∂xk

)
, qi =

μ

(γ − 1)Pr

∂T

∂xi

,

where, Pr = 0.75 is the Prandtl number, μ = T 3/2(1 + c)/(T + c) is viscosity computed
by the Sutherland law, with c = 110.4/T∞ and T∞ = 300, and T = γ p

ρ
is the

temperature. In our simulation, we choose the Reynolds number Re = 106.
Following the simulation in Erlebacher et al. (1997), a stationary shock is initially

located at the x = 0 plane. In the upstream of the shock (x < 0)

ρ = 1, ux = −γ 1/2M1, ur = uθ = 0, p = 1, (3.2)
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and the downstream mean solution is (x > 0)

ρ =
(γ + 1)M2

1

(γ − 1)M2
1 + 2

, ux = −
γ 1/2

(
(γ − 1)M2

1 + 2
)

(γ + 1)M1

,

ur = uθ = 0, p =
2γM2

1 − (γ − 1)

γ + 1
.

⎫⎪⎪⎬
⎪⎪⎭

(3.3)

An isentropic vortex is superimposed on the mean flow upstream of the shock. The
axis of the vortex is along the x-axis (y = z = 0). Analytical forms of such vortices
with arbitrary radial profiles are steady state solutions of the Euler equations. The
perturbations of the azimuthal velocity u′

θ and the temperature associated with the
vortex are given by

u′
θ =

εr

2π
e0.5(1−r2), T ′ = − (γ − 1)ε2

8γ π2r2
0

e(1−r2), (3.4)

where r =
√

y2 + z2 is the radius to the vortex axis, r0 is the vortex core radius and ε

is a non-dimensional circulation at r = 1, related to the dimensional circulation Γ by

ε =
Γ

r0c∗ . (3.5)

The axial and radial velocity components u′
x and u′

r are zero, the entropy
S = log(p/ργ ) is constant inside the vortex, and u′

θ is maximum at r = 1.
Erlebacher et al. (1997) systemically simulated the interaction of a normal shock

and a longitudinal vortex using a third-order ENO scheme through solving the
axisymmetrical Euler equations. The region for the shock induced vortex breakdown
was obtained by a parameter study. This simulation revealed many features of shock
dynamics and vortex breakdown. However, due to the axisymmetric limitation, it
cannot predict the sectional streamline pattern in the cross-section perpendicular to
the vortex axis. Neither can it reveal the instability of the azimuthal wave modes
(Sanchez, Marques & Lopez 2002; Marques, Gelfgat & Lopez 2003) nor the azimuthal
vorticity gradient (Kurosaka et al. 2006), which plays a very important role in
vortex breakdown. Hence, the simulation for the full three-dimensional Navier–Stokes
equations is necessary. In this paper, we do not repeat all the cases of the simulation
in Erlebacher et al. (1997). We just simulate two typical cases to reveal the topological
structure and the evolution of the vortex breakdown in a full three-dimensional
setting. The first case corresponds to M1 = 1.2 and ε = 4.5, which is beyond the vortex
breakdown region given by Erlebacher et al. (1997). The second case is a typical case
involving vortex breakdown in Erlebacher et al. (1997) with M1 = 2 and ε =7.

To validate our three-dimensional code, we perform an accuracy test for unsteady
Navier–Stokes equations using an explicitly given smooth solution, similar to that
in Zhang & Shu (2007). The designed order of accuracy is achieved in a mesh
refinement study. Then, we compute the numerical result for the interaction of a
normal shock wave and a longitudinal vortex with M1 = 2 and ε = 7 with different
grid density. Figure 6 contains the distribution of pressure and Mach number on
the vortex axis and a comparison among three different grids of the current three-
dimensional code, as well as the result obtained from the axisymmetric Euler equation
by a third-order ENO scheme in Erlebacher et al. (1997). The finest grid (Grid1) has
1600 × 640 × 640 grid points, corresponding to the x, y and z directions respectively.
The coarser grid (Grid2) has 800 × 320 × 320 points, and the coarsest grid (Grid3)
has 300×120×120 points. The axisymmetric Euler equations are simulated by a grid
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Figure 6. The distribution of pressure and Mach number along the vortex axis for
different grids.

density of 1600 × 640 (EHS). The computational domain is set to be xl = −8, xr = 10,
yl = zl = −5, yr = zr = 5. The comparison shows that a grid convergence is achieved.
However, the grid convergence here does not imply that simulation results for all
the cases in this paper are not related to the grid density. In fact, there are many
small-scale structures, such as the critical point on the limit cycle and fluctuation of
the velocity, pressure and density, which are very difficult to resolve and hence the
results may be related to grid density.

To reveal the topological structure of a vortical flow, especially in the region of
vortex breakdown, sectional streamlines in two cross-sections are plotted. One is
the cross-section perpendicular to the vortex axis. Because the vortex axis in our
numerical simulations is aligned with the x-axis, this cross-section is the y–z plane.
The sectional streamlines in this cross-section exactly represent the path described by
(2.6). The other is the meridional plane or the x–z plane. The sectional streamlines in
the meridional plane exactly represent the path described by (2.13).

Plotting sectional streamlines is a common method to visualize flow structure
for numerical results (Erlebacher et al. 1997; Kandil et al. 1992; Blackmore 1994;
Zhang & Zhu 1997; Krause et al. 2003) and is used in the digital measuring experiment
(Delery 1994). However, the interpretation of sectional streamlines should be given
with care, as these are not real streamlines when there is a non-zero velocity component
out of the plane. We will give more discussion about this point later in § 3.4.

3.1. Case I

Our first simulation case corresponds to M1 = 1.2 and ε =4.5, which is beyond
the region of shock induced vortex breakdown given by Erlebacher et al. (1997).
However, in our simulation, we still observe vortex breakdown. In this case, the
main difference between the two simulations is the size of the computational
domain and the simulation time. In Erlebacher et al. (1997), the computational
domain is chosen to be xl = −8, xr = 10, rm = 5 and the simulation runs to t = 11.
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Figure 7. The onset and evolution of vortex breakdown for M1 = 1.2 and ε = 4.5.

In this paper, the computational domain is chosen as xl = −10, xr = 28, yl = zl = −5
and yr = zr =5 and the simulation runs to t = 50. The grid density is 1600×320×320.

3.1.1. The topological structure in the meridional plane

Figure 7 contains the sectional streamlines in the meridional plane at a series of
typical times. At t =11, in figure 7(a), there is no critical point on the vortex axis,
neither is there a reversal flow region which could be seen as a criterion of vortex
breakdown. Hence, the vortex has not broken down yet, coinciding with the result
in Erlebacher et al. (1997). However, as time increases, the vortex changes its pattern
dramatically. At t = 11.65, the sectional streamlines which are close to the vortex axis
turn away from the axis near x = 3.5. As a result, the stream surface is swollen near
this region, which is similar to the first pattern of Brøns et al. (1999) shown in figure 5,
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Figure 8. The iso-surface of vorticity |ω| = 3 at t = 25 of Case I.

as can be seen in the boxed region in figure 7(b). At t = 11.8, a region of reversal
axial flow appears. There are two saddle points on the vortex axis. One corresponds
to separation and the other to attachment, which are the same with those in figure 4.
This is the onset point of vortex breakdown. As time further evolves, the separation
bubble becomes larger. At the time t = 25, a second reversal axial flow appears. As
the vortex breakdown develops continuously, the two bubbles disappear, and there
are a series of critical points on the vortex axis (see figure 7i).

Figure 8 is the iso-vorticity surface of |ω| =
√

ω2
x + ω2

y + ω2
z , which was widely

used to show vortex cores (Hussain & Hayakawa 1987; Bisset, Antonia & Browne
1990; Ruith et al. 2003). Jeong and Hussain (Jeong & Hussain 1995) concluded that
the iso-vorticity surface at a sufficiently low level is a necessary but not sufficient
condition to detect a tubular vortex coherent structure. From figure 8, we find that
the breakdown has a quadru-helix structure, which does not seem to have been
reported in previous studies. This structure is different from the double helix structure
found by Sarpkaya (1971). It is similar to the two-tailed type 0 breakdown observed
by Faler & Leibovich (1977). We will discuss it further in § 3.3.

3.1.2. The sectional streamline pattern in the cross-section perpendicular to the vortex
axis

Based on our topological analysis in § 2, λ(x, t) = 1/ρ(∂ρ/∂t + ∂ρu/∂x) is a
key function to determine the sectional streamline pattern in the cross-section
perpendicular to the vortex axis. The sign of λ(x, t) decides the spiral direction
of the sectional streamline in the vicinity of the vortex core. If λ(x, t) changes sign
along the vortex axis, there might be one or more limit cycles. Figure 9 is the
distribution of λ(x, t) along the vortex axis at time t =25. Along the vortex axis,
there are seven regions where λ> 0, which are represented by pi , (i = 1, 2, . . . , 7),
and six regions where λ< 0, which are represented by ni , (i = 1, 2, . . . , 6). Figure 10
contains the sectional streamlines in the cross-section perpendicular to the vortex
axis. Because the initial vortex is isentropic, λ=0 in the undisturbed region. Hence,
the sectional streamline forms a nonlinear centre in the undisturbed region. At the
cross-section of x = −0.125, which is just before the initial shock wave, λ= 0.026, the
sectional streamline in the vicinity of the vortex core spirals inwards which is shown
in figure 10(a). At the cross-section of x = 1.45, λ= −0.115, the sectional streamline
in the vicinity of the vortex core spirals outwards. From x = −0.125 to x = 1.45, the
sign of λ changes from positive to negative, however, we do not observe a limit cycle.
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Figure 9. The distribution of λ on the vortex axis at t = 25 of Case I.

This might be due to the proximity to the shock region. Even though λ changes its
sign, the sectional streamlines in both the near vortex core region and far region
can change their spiral directions due to the shock wave, resulting in the lack of
limit cycle. This phenomenon was also observed in a two-dimensional shock vortex
interaction (Zhang et al. 2005). The spiral direction of the vortex is affected by the
oscillation of the deformed shock wave. At the cross-section of x =3.025, λ=0.985,
the sectional streamline in the vicinity of the vortex core spirals inwards which is
shown in figure 10(c). From the cross-section x =1.45 to x =3.025, λ changes its
sign and a limit cycle appears. Followed this, when x increases to x =3.7, λ changes
its sign twice, there are two more limit cycles which can be seen in figures 10(d) and
10(e). It is noted that not every change of the sign of λ could result in a limit cycle.
Occasionally, the change of the sign of λ reduces the number of limit cycles. For
instance, when x increases from 3.7 to 4.15 (see figures 10e and 10f ), λ changes its
sign from positive to negative, but there is no limit cycle added. Instead, one limit
cycle disappears. This might be the result of a merging of the separated regions.

Based on the sectional streamlines in the meridional plane, we conclude that the
vortex breakdown occurs at approximately x = 5 at t =25, which can be seen in
figure 7(h). From the cross-section of x = 5.3875, four small vortices appear in the
circumferential direction, which is the result of the double Hopf bifurcation of the
swirling flow (Sanchez et al. 2002; Marques et al. 2003). We deduce that this is the
origin of the quadru-helix structure shown in figure 8 and we will discuss this further
in § 3.3.

The sectional streamlines in figure 10 are mainly plotted in the cross-sections in
the region of vortex breakdown, while the quadru-helix structure is observed by the
vorticity iso-surface located in the tail of the vortex breakdown. To illustrate better
this vortex quadru-helix structure, we plot in figure 11 the iso-surface of density as
well as the sectional streamlines at the cross-section x =19.9 which is in the tail of
the vortex breakdown. The quadru-helix structure can be observed in the iso-surface
of density, and each helix matches with a vortex in the sectional streamlines.
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Figure 10. For caption see page 17

3.2. Case II

Our second case is a typical case of vortex breakdown in Erlebacher et al. (1997) with
M1 = 2 and ε = 7. Erlebacher et al. (1997) gave the evolution of the vortex breakdown.
Here, we will focus on the study of the topological structure, which is obtained by
the finest grid 1600 × 640 × 640.
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3.2.1. The topological structure in the meridional plane

Figure 12 contains the evolution of the shock structure in the meridional plane.
At the beginning of the interaction, the initial shock is deformed to a bow shape.
At the intersection point between the bow shock and the vortex axis, the shock
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Figure 10. The sectional streamline pattern in the cross-section perpendicular to the vortex
axis t = 25 of case I.

keeps perpendicular to the vortex axis. As time increases, the intersection point moves
upwards continuously and there appears a triple point on the initial shock wave
which moves upwards continuously. Another shock appears at approximately x = 0.
At t =11, the interaction results in a complex shock structure, which includes three
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Figure 11. The iso-surface (a) of density ρ =1.2 and the density contour and sectional
streamlines on the cross-section of x =19.9 (b) for Case I at t = 25.

oblique shock waves A, B and C and a normal shock wave D. H , E1 and E2 are
shear layers. The positions of the shock waves are the same as those obtained by
Erlebacher et al. (1997) from the axisymmetrical Euler equations.

Figure 13 contains the sectional streamlines in the meridional plane at typical times,
which represent the onset and time evolution of the shock induced vortex breakdown.
It can be seen from figure 13(a) that the vortex breakdown begins at a combination
of a saddle and a node on the vortex axis, which is the same with the topological
analysis shown in figure 4. After that, a reversal flow bubble appears just after the
deformed shock. As time increases, the bubble becomes larger. At the tail of the
breakdown region, there are a series of small vortices similar to the structure of a
shear layer.

Figure 14 contains the three-dimensional streamlines (figure 14a) and iso-vorticity
surface (figure 14b). From the figure of the three-dimensional streamlines, we can
observe a vortex ring near x = 0. Similar to Case I described in the previous subsection,
we observe again a quadru-helix structure in the tail of the vortex breakdown. In
figure 15 we plot the iso-surface of vorticity as well as the density contour on a
cross-section in the tail of the vortex breakdown. We observe that the quadru-helix
structure can match with the density contours. In figure 16, we plot the iso-surface of
density ρ = 1.75 and the three-dimensional streamlines starting from the tails of the
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Figure 12. The time evolution of flow structure in the meridional plane for M1 = 2 and
ε = 7: numerical shadowgraph obtained from �2ρ = ∂2ρ/∂x2 + ∂2ρ/∂y2.

quadru-helix. We can observe that each leg of the quadru-helix structure corresponds
exactly to a small vortex tube. Comparing the iso-density surface and the iso-vorticity
surface, we can observe similar flow structures represented, however the iso-vorticity
surface seems much clearer to show small scale vortices than the iso-density surface.
Due to the limitation on the speed and memory of our visualization software, all
three-dimensional figures are plotted from the simulation data by skipping some
grid points. A detailed comparison of the two visualizing techniques is left for future
study.
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Figure 14. Three dimensional streamlines (a) and iso-vorticity surface |ω| = 9 (b) at t = 11
for Case II.

3.2.2. The sectional streamline pattern in the cross-section perpendicular to the vortex
axis

Figure 17 is the distribution of λ(x, t) along the vortex axis at t = 11. In this case,
there are three positive λ regions p1, p2 and p3 and three negative λ regions n1, n2
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xy

z

Figure 16. The iso-surface of density ρ = 1.75 and three-dimensional streamlines (in red) at
t = 11 for Case II.

and n3. Figure 18 contains the sectional streamlines in the cross-section perpendicular
to the vortex axis.

From figure 18, we obtain the same conclusion as in Case I: (i) In the region of
λ> 0, the sectional streamline in the vicinity of the vortex core spirals inwards; (ii) in
the region of λ< 0, the sectional streamline in the vicinity of the vortex core spirals
outwards; (iii) one or more limit cycles appear when λ changes its sign. Similar to Case
I, we find four small vortices in the circumferential direction at x = −2.6 which might
be the origin of the quadru-helix structure. At the cross-section of x = −2.52125,
there are a series of critical points on the third limit cycle (see figures 18g and
18h). The pattern of the critical points consists of saddles or nodes. The saddles
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and nodes are distributed alternately. Figure 19 shows the density contours in this
section. We can observe that there are a lot of small structures around the third
limit cycle, which is a turbulence-like shear layer. Along this turbulence-like shear
layer, the sectional streamlines in figures 18(g), 18(h) and 18(i) are very complicated.
Even though there are a lot of small scale structures that we cannot fully resolve,
the larger scale structures are approximately grid independent. Figure 20 contains the
circumferential distribution of density at r = 1.382 and r = 1.848 on the cross-section
of x = −2.6. Figure 21 contains the radial distribution of density along the positive
y-axis. From these two figures, we can observe a significant difference between the
results obtained by the finest and the coarsest grids. However, the results obtained by
the finest grid (Grid1) and the medium grid (Grid2) agree reasonably well. The key
difference is in the smallest scale structures. This means that our numerical results
are approximately grid-independent for large-scale structures.

3.3. Double Hopf bifurcation of swirling flow and multi-helix structure of vortex
breakdown

Through the numerical simulation for the interaction of a normal shock and a
longitudinal vortex, we found that there is a quadru-helix structure in the tail of the
vortex breakdown. In fact, this phenomenon has close relationship with the instability
of the rotating waves.

Through a linear stability analysis, Sanchez et al. (2002) and Marques et al. (2003)
studied the stability of azimuthal waves for a swirling flow. They found that the most
unstable modes are m =4 and 8, which result in the tangent Hopf bifurcation of the
axisymmetric basic state.

In the interaction between a normal shock and an axisymmetric vortex, the
Reynolds number is very large. It is also the azimuthal instability that results in the
difference between the result obtained from a full three-dimensional Navier–Stokes
simulation and a simulation based on the axisymmetric equations.

Figure 22 contains the circumferential distribution around a circle and their
Fourier transformation. The density is obtained at the cross-section of x =5.8375
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Figure 18. For caption see next page.

and r = 1.0143 for Case I and of x = 4.6 and r = 0.83246 for Case II. In both cases,
we found that m =4 and 8 are the two most unstable azimuthal wave modes. In
the cross-section of Case II, we can observe the m =4 mode at the cross-section of
x = −3.41 (see figure 18c), which develops into four small vortices (see figure 18f ). The
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Figure 18. The sectional streamline pattern in the cross-section perpendicular
to the vortex axis t = 11 of Case II.

mode of m =8 can be observed at the cross-section of x = −2.6 shown in figure 18(f ).
If the four small vortices represent the four vortex tubes in the tail of the vortex
breakdown in figure 14, we can predict that there are also eight helix in the tail of
the vortex breakdown, which is not visualized due to the limitation of the numerical
visualization. Hence, the vortex breakdown has a multi-helix structure.

3.4. Discussion on flow visualization

In this section we give a brief discussion on flow visualization and a justification of
using sectional streamlines to reveal flow structures.

Plotting density contours on cross-sections is a common method to view the
structure of a three-dimensional flow, which is similar to the Mach contours on a
cross-section (Kandil et al. 1992). Figure 23 is a three-dimensional iso-surface of
density and the density contours on a cross-section for Case II discussed in § 3.2.
We can observe that the density contour on the cross-section can match the three-
dimensional structure of density iso-surface.

In our simulating cases, the sectional streamlines can match the contours of the
density. In figure 24, we plot the contours of density and the sectional streamlines
on two typical cross-sections of x = −2.6 and x = 4.6 for Case II discussed in § 3.2.
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We can observe that the sectional streamlines and density contours describe the same
flow structure, while the former can better reveal vortex structures including swirling
direction.

The flow of a normal shock and a longitudinal vortex interaction is asymmetric.
However, they are developed from an axisymmetric flow and certain symmetry are
still maintained in the three-dimensional simulation. We plot the density contours in
the x–y plane and the x–z plane and find that they are identical (not shown here
to save space). This justifies our specific choice of sectional streamlines to visualize.
Figure 25 contains the sectional streamlines on the meridional plane (x–z plane) and
density contours. They reveal the same flow structure, while again the former can
better reveal vortex structures including swirling direction.
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4. Concluding remarks
Based on the critical point theory of ordinary differential equations, we have

studied the topological structure of a swirling flow. The topological structure contains
the sectional streamline pattern in the symmetric plane and in the cross-section
perpendicular to the vortex axis. In the cross-section perpendicular to the vortex axis,
the sectional streamline pattern in the vicinity of the vortex core can be of two types,
spiral inwards and spiral outwards, depending on a function λ(x, t) = 1/ρ(∂ρ/∂t +
∂ρu/∂x). If λ> 0, the sectional streamline spirals inwards. If λ< 0, the sectional
streamline spirals outwards. If λ changes its sign along the vortex axis and the sectional
streamlines far away from the vortex core do not change their spiral direction, one or
more limit cycles appear in the sectional streamline in the cross-section perpendicular
to the vortex axis.

For a steady flow, there is an essential difference between a supersonic and a
subsonic vortex. For a supersonic vortex, sectional streamlines in the vicinity of the
vortex core spiral outwards in the locally favourable pressure region. They spiral
inwards in the locally adverse pressure region. For a subsonic vortex, sectional
streamlines in the vicinity of the vortex core spiral inwards in the locally favourable
pressure region and spiral outwards in the locally adverse pressure region.

Unlike the steady case, there are two types of critical points on the vortex axis for
an unsteady flow. They are saddles and nodes.

Two typical interactions of a normal shock wave and a longitudinal vortex are
simulated by solving the three-dimensional unsteady Navier–Stokes equations. The
shock induced vortex breakdown is obtained. Numerical results agree with the
topological analysis. In the region of λ> 0, sectional streamlines in the vicinity
of the vortex core spiral inwards. In the region of λ< 0, sectional streamlines in
the vicinity of the vortex core spiral outwards. More limit cycles are found in the
sectional streamline pattern of the cross-section perpendicular to the vortex core when
λ changes its sign along the vortex axis.
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for Case II at t = 11.
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A quadru-helix structure is found in the tail of the vortex breakdown, which
results from the instability of the azimuthal wave with m =4. Using Fourier analysis,
we found that there are more unstable waves. Hence, we predict that the vortex
breakdown has a multi-helix structure.
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